دکتر منصور ذوالقدری جهرمی

دکتر اقبال منصوری

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی گردد

(در فایل دانلودی نام نویسنده موجود می باشد)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل می باشد)

چکیده

نتایج آزمایشات نشان داده می باشد که ترکیب چندین دسته­بند[1] می­تواند کارایی الگوریتم­های متنوع را بالا ببرد. روش­های تصمیم­گیری دسته­جمعی[2] بسیاری ارائه شده­اند که با بهره گیری از آن­ها، خطای روش­های مختلف دسته­بندی[3] کاهش یافته می باشد. با این حال، این گونه روش­ها نتوانسته­اند کارایی الگوریتم نزدیک­ترین همسایه[4] را افزایش دهند. در این پایان­نامه یک روش تصمیم­گیری دسته­جمعی ارائه شده می باشد تا با بهره گیری از ترکیب وزن­دار چندین دسته­بند، کارایی را بهبود بدهد. در این روش هر کدام از این دسته­بند­ها یک دسته­بند نزدیک­ترین همسایه می باشد که تنها از زیر مجموعه­ای از مجموعه ویژگی­ها[5] نمونه­ها بهره گیری می­کند. در ادامه، الگوریتم به هر کدام از آن­ها یک وزن اختصاص می­دهد و در نهایت از یک مکانیسم رای­گیری وزنی[6] برای تعیین خروجی مدل دسته­جمعی بهره گیری می کند.

فهرست مطالب

  عنوان                               صفحه

فصل اول   1

مقدمه  1

1-1- مقدمه. 2

1-2- روش­های دسته­بندی.. 3

1-3- ارزیابی دسته­بند. 4

1-4- تصدیق متقابل.. 6

1-5- الگوریتم نزدیک­ترین همسایه. 7

1-7- سر فصل­ها 9

فصل دوم  10

الگوریتم نزدیک­ترن همسایه و روش­های موجود برای بهبود آن.. 10

2-1-الگوریتم نزدیک­ترین همسایه. 11

2-2- محدودیت­های روش نزدیک­ترین همسایه. 14

2-3- مروری بر راه­کارهای ارائه شده در گذشته برای بهبود الگوریتم نزدیکترین همسایه. 15

فصل سوم  18

روش­های تصمیم­گیری دسته­جمعی.. 18

3-1- مقدمه. 19

3-2- روش­های متفاوت برای ایجاد یک تصمیم­گیر دسته­جمعی.. 21

3-3- ساختارهای مختلف در روش تصمیم­گیری دسته­جمعی.. 22

3-4- رای­گیری بین دسته­بندها 23

3-5- معرفی چند روش تصمیم­گیری دسته­جمعی پرکاربرد. 24

فصل چهارم  28

روش پیشنهادی برای دسته­جمعی کردن الگوریتم نزدیک­ترین همسایه. 28

4-1- مقدمه. 29

4-2- ایده­ی اصلی.. 30

4-3- دسته­جمعی کردن مجموعه دسته­بندهای وزن­دار نزدیک­ترین همسایه. 31

فصل پنجم   39

نتایج آزمایشات پیاده سازی و نتیجه­گیری.. 39

5-1- نتایج.. 40

فصل ششم   45

نتیجه­گیری   45

فهرست منابع.. 48

  • مقدمه

در دنیای امروزی حجم اطلاعات دیجیتالی به صورت روز افزونی در حال افزایش می باشد. در همین راستا، به جهت مدیریت و مطالعه علمی این اطلاعات، نیاز به پردازش هوشمندانه و خودکار این اطلاعات بیش از پیش احساس می گردد.

یکی از مهم ترین این پردازش ها که در فناوری اطلاعات و ارتباطات مورد نیاز می باشد، دسته­بندی خودکار این اطلاعات می باشد. دسته بندی در مسائل متنوعی در فناوری اطلاعات به کار گرفته می گردد، در مسائلی مانند امنیت اطلاعات، شناسایی نفوزگری در شبکه، دسته بندی کاربران بر اساس اطلاعات شخصی، پردازش تصویر و در واقع شناسایی هر گونه الگو بر اساس نمونه­ها و اطلاعات پیشین. این پردازش می تواند دسته[1]­ی نمونه­های جدید که به مجموعه اطلاعات اضافه می گردد را پیش بینی نماید. از این رو در هوش مصنوعی توجه خاصی به توسعه انواع روش­های دسته­بندی هوشمند و خودکار شده می باشد.

 روش­های دسته­بندی

دسته­بندی یکی از مهم­ترین شاخه‌های یادگیری ماشین[2] می باشد. دسته­بندی به پیش­بینی برچسب دسته[3] نمونه[4] بدون برچسب، بر اساس مجموعه نمونه­های آموزشی برچسب­دار (که قبلا به با کمک یک کارشناس دسته­بندی  شده­اند) گفته می­گردد. درواقع دسته­بندی روشی می باشد که هدف آن، گروه­بندی اشیا به تعدادی دسته یا گروه می­باشد. در روش‌های دسته­بندی، با بهره گیری از اطلاعات بدست آمده از مجموعه نمونه­های آموزشی، از فضای ویژگی­ها[5] به مجموعه برچسب دسته­ها نگاشتی بدست می آید که بر اساس آن، نمونه­های بدون برچسب به یکی از دسته­ها نسبت داده می­گردد.

در مسائل دسته­بندی، هر نمونه توسط یک بردار ویژگی[6] به صورت X=<x1 , x2 ,… xm> معرفی می­گردد که نشان دهنده­ی مجموعه مقادیر ویژگی­های نمونه­ی­ مربوطه می باشد. بر اساس این بردار، نمونه­ی ­ X دارای m خصوصیت یا ویژگی می باشد. این ویژگی­ها می­توانند مقادیر عدد صحیح، اعشاری ویا مقادیر نامی[7] به خود اختصاص بدهند. همچنین این نمونه دارای یک برچسب C می باشد که معرف دسته­ای­ می باشد که نمونه­ی­ X به آن تعلق دارد.

تفاوت روش­ها دسته­بندی در چگونگی طراحی نگاشت می باشد. در بعضی از آن­ها با بهره گیری از داده­های آموزشی مدلی ایجاد می­گردد که بر اساس آن فضای ویژگی­ها به قسمت­های مختلف تقسیم می­گردد که در آن، هر قسمت نشان دهنده­ی یک دسته می باشد. در این گونه روش­های دسته­بندی از مدل برای پیش­بینی دسته­ی­ نمونه بدون برچسب بهره گیری شده و از نمونه­­های آموزشی به گونه مستقیم بهره گیری نمی گردد. یک نمونه از این دسته­بندها، دسته­بندهای احتمالی[8] می­باشد. این گونه الگوریتم­ها، از استنتاج آماری برای یافتن بهترین دسته بهره گیری می­کنند؛ برخلاف سایر دسته­بند­ها که فقط بهترین کلاس را مشخص می­کنند الگوریتم­های احتمالی به ازای هر دسته موجود یک احتمال را به عنوان تعلق نمونه به آن مشخص می­کنند و کلاس برنده، بر اساس بیشترین احتمال انتخاب می­گردد. روش­های احتمالی در یادگیری ماشین معمولا با نام الگوریتم­های آماری نیز شناخته می­شوند. در گروهی دیگر از روش­های دسته بندی، نمونه براساس خود مجموعه نمونه­ها و بدون ساختن مدل، به پیش­بینی دسته­ی نمونه مورد نظر می­پردازد. به این گونه الگوریتم های دسته­بندی، نمونه- بنیاد[9] گفته می­گردد.

تاکنون الگوریتم­های متفاوتی به عنوان دسته­بند ارائه شده­اند. مانند­ی­ آن­ها می­توان به الگوریتم نزدیک ترین همسایه­ها[10] [1] ، دسته­بند بیز[11][2]، ماشین بردار پشتیبان[3] و شبکه عصبی[12][4] تصریح نمود.

  • ارزیابی دسته­بند

جستجو در سایت :   


اولین موضوعی که در مورد هر الگوریتم مورد توجه قرار می­گیرد، کارایی و دقت آن الگوریتم می باشد. در هوش مصنوعی، معیار­های متفاوتی وجود دارند که در مسائل مختلف و زیر شاخه­های این علم بهره گیری می­گردد. در مورد کارایی یک دسته­بند­، به عنوان یکی از مسائل اصلی هوش مصنوعی، روش­های متنوعی هست که در این قسمت مطالعه شده­اند.

معیار کارایی نظر­گرفته شده برای یک دسته­بند، ارتباط مستقیمی با کاربرد و ضمینه کار خاص آن دسته­بند دارد. پس در مسائل متفاوت، ممکن می باشد معیار­های مختلفی برای اندازه­گیری کارایی الگوریتم در نظر­گرفته گردد. همچنین همان گونه که مشخص می باشد، یک دسته­بند که بتواند برای همه مسائل موجود بهترین جواب را ارائه دهد، وجود ندارد.

در مطالعه آماری کارایی یک دسته­بند، از یک مجموعه که شامل تعداد مشخصی نمونه­ی­ آموزشی دارای برچسب می باشد بهره گیری می­گردد. برای این کار، قسمتی از این نمونه­ها و یا تمام مجموعه،­ به عنوان مجموعه آموزشی[13]، در اختیار دسته­بند برای آموزش قرار می­گیرد. پس از آموزش، دسته بند به وسیله­ی­ زیر­مجموعه­ای­ از نمونه­ها، به عنوان نمونه­های­ آزمایشی، محک زده می­گردد. نمونه­ها­ی موجود در مجموعه­ی­ آزمایشی، بسته به نوع آزمون کارایی، می­تواند عضو مجموعه آموزشی بوده و یا متفاوت با آن باشند. دانلود متن کامل در سایت sabzfile.com

این مطلب رو هم توصیه می کنم بخونین:   دانلود پایان نامه کارشناسی ارشد رشته کامپیوتر با موضوع تور باز آرا

نرخ دسته­بندی[14] یا صحت[15] پرکاربردترین و ساده­ترین معیار اندازه­گیری کارایی هر دسته­بند می باشد. این معیار برابر می باشد با نسبت تعداد نمونه­های درست دسته­بندی شده به تعداد کل نمونه­ها. براساس این تعریف، نرخ خطای دسته­بندی از ارتباط زیر بدست می­آید:

 مقادیر دقت[16] و بازخوانی[17] نیز معیارهای مناسبی برای ارزیابی دسته­بندها می­باشند. که اخیرا برای ارزیابی رقابت[18] بین اشتباه-مثبت[19] و درست-مثبت[20] بهره گیری می­گردد. در ادامه این معیار­ها معرفی می­گردد.

  • معیاردقت : احتمال مثبت بودن نمونه­هایی که مثبت اعلام شده­اند.

                  معیار بازخوانی : احتمال مثبت اعلام کردن نمونه­های دسته مثبت.

   معیار اختصاص[21]: احتمال منفی اعلام کردن  نمونه­های دسته منفی.

که در این معیارها، دسته مثبت، دسته مورد مطالعه می باشد و دسته منفی به سایر دسته­ها گفته می­گردد.

  • تصدیق متقابل[22]

یک روش برای ارزیابی آماری دسته­بند، تصدق متقابل[5] می­باشد. در این تکنیک برای ارزیابی کارایی دسته­بند، نمونه­ها را به صورت تصادفی به دو گروه که مکمل یکدیگر هستند، تقسیم می­کنند. با یک گروه سیستم را آموزش داده و با گروه دیگر سیستم آموزش دیده را مورد آزمایش قرار می­دهند. با این کار از تطبیق بیش از حد[23] مدل بر روی داده­های آموزشی جلوگیری می­گردد و نتایج بدست آمده از ارزیابی، دارای درجه اطمینان بیشتر خواهد بود. برای اطمینان بیشتر از نتایج، تصدیق متقابل در چندین مرحله صورت تکرار شده و در هر مرحله، از تقسیم­بندی متفاوتی برای نمونه­ها بهره گیری می­گردد. در پایان از نتایج تمامی تکرار آزمایش­ها میانگین­گیری صورت می­گیرد.

در ادامه روش­های مختلف تطبیق متقابل تبیین داده می­گردد.

  • تصدیق زیر گروه تصادفی[24]: در این روش، نمونه­ها به صورت تصادفی به دو گروه آموزشی[25] و آزمایشی[26] تقسیم می­شوند. سپس دسته­بند به وسیله­ی­ نمونه­های آموزشی، آموزش داده می­گردد و با بهره گیری از مجموعه دیگر آزمایش شده و کارایی محاسبه می­گردد. این عملیات چندین بار انجام می­گیرد و در نهایت میانگین آن­ها به عنوان کارایی دسته­بند ارائه می­گردد. با در نظر داشتن تصادفی انتخاب شدن مجموعه­های آموزشی و آزمایشی، مهم­ترین مشکل این روش امکان عدم انتخاب بعضی از نمونه­ها به عنوان عضو یکی از دو گروه و یا انتخاب بیش از یک بار بعضی از نمونه­ها می­باشد.
  • تصدیق متقابل k قسمت[27]: در روش آغاز مجموعه نمونه­ها به K دسته تقسیم می­شوند. در هر مرحله نمونه­های k-1 دسته به عنوان مجموعه آموزشی در نظر گرفته می­گردد و با بهره گیری از یک دسته دیگر کارایی سیستم دسته­بند ارزیابی می­گردد. در نهایت کارایی سیستم برابر با میانگین کارایی در همه مراحل می­گردد. در این روش از همه نمونه­ها برای آموزش و آزمایش بهره گیری می­گردد.
  • تصدیق یکی پیش روی بقیه[28]: یک روش دیگر، تصدیق یکی پیش روی بقیه می باشد. در این روش، هر نمونه یک بار به عنوان نمونه آزمایشی انتخاب می­گردد و از سایر نمونه­­ها برای آموزش بهره گیری می­شوند. این روش بر روی تمامی نمونه­ها انجام می­گردد. در پایان، کارایی الگوریتم برابر نسبت تعداد نمونه­های درست دسته­بندی شده به کل می باشد.
    • الگوریتم نزدیک­ترین همسایه

یکی از الگوریتم­های معروف دسته­بندی، الگوریتم نزدیک همسایه می باشد؛ با این که از معرفی آن چندین دهه می­گذرد، این روش همچنان محبوب بوده و کاربرد بسیاری در مسائل مختلف دارد. دلیل این موضوع سادگی پیاده­سازی و کارایی بالا این روش می باشد. به علاوه، این الگوریتم را به سادگی می­توان در مسائل مختلف به کار برد. الگوریتم نزدیک­ترین همسایه از یک قانون بسیار ساده در اقدام دسته­بندی بهره گیری می­کند. نمونه­هایی که شباهت بیشتری با یکدیگر دارند(در فضای ویژگی­ها در نزدیکی یکدیگر قرار گرفته­اند)، به احتمال بالا در یک دسته قرار دارند. بر طبق این، در الگوریتم نزدیک­ترین­ همسایه، برای بدست آوردن دسته­ی­ نمونه­ی­ پرس­و­جو شده[29]، بر اساس یک معیار شباهت(تفاوت)[30]، نزدیک­ترین­ نمونه، از مجموعه­ی­ نمونه­های آموزشی تعیین می­گردد. سپس الگوریتم دسته­ی­ این نمونه را به عنوان دسته­ی­ نمونه­ی پرس­و­جو شده اعلام می­کند.

به عنوان مثال، شکل 1 چگونگی بدست آوردن دسته­ی نمونه­ی­ پرس­وجو شده را توسط الگوریتم نزدیک­ترین­ همسایه، در یک فضای ویژگی دو بعدی و در مسئله­ای­ با سه دسته نمایش می­دهد. در این مثال، از معیار فاصله اقلیدسی برای بدست آوردن نزدیک­ترین همسایه بهره گیری شده می باشد.

تعداد صفحه :63

قیمت : 14700 تومان

بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد

و در ضمن فایل خریداری شده به ایمیل شما ارسال می گردد.

پشتیبانی سایت :        ****       serderehi@gmail.com

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

***  **** ***