اساتید راهنما:

آقای دکتر محمود فتحی

آقای دکتر محسن سریانی

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی گردد

(در فایل دانلودی نام نویسنده موجود می باشد)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل می باشد)

فهرست مطالب:

1- مقدمه. 1

1-1- تعریف سیستم‏های نظارت چهره راننده 1

1-2- ضرورت سیستم‏های نظارت چهره راننده 2

1-3- چالش‏های اساسی در سیستم‏های نظارت چهره راننده 3

1-4- مفاهیم خستگی، خواب‏آلودگی و عدم‏تمرکز‏حواس… 4

1-4-1- خستگی و خواب‏آلودگی.. 4 دانلود متن کامل در سایت sabzfile.com

1-4-2- عدم تمرکز حواس… 6

1-5- روش‏های تشخیص خستگی و عدم تمرکز حواس راننده 6

1-6- طرح کلی پایان‏نامه. 7

2- مروری بر کارهای گذشته. 8

2-1- پیکربندی کلی سیستم‏های نظارت چهره راننده 9

2-1-1- تصویربرداری.. 9

2-1-2- سخت‏افزار و پردازنده 10

2-1-3- نرم‏افزار هوشمند. 11

2-2- آشکارسازی چهره 13

2-2-1- روش‏های مبتنی بر مدل رنگ… 13

2-2-2- روش‏های مبتنی بر ویژگی‏های شبه هار. 14

2-2-3- روش‏های مبتنی بر شبکه عصبی.. 14

2-3- آشکارسازی چشم. 15

2-3-1- روش‏های مبتنی بر نورپردازی و تصویربرداری در طیف مادون قرمز. 15

2-3-2- روش‏های مبتنی بر دوسطحی کردن تصویر. 18

2-3-3- روش‏های مبتنی بر پروجکشن.. 19

2-3-4- روش‏های مبتنی بر یادگیری.. 20

2-4- آشکارسازی سایر اجزای چهره 21

2-4-1- آشکارسازی دهان (لب) 21

2-4-2- آشکارسازی بینی.. 21

2-5- ردیابی چهره و اجزای آن. 22

2-5-1- تخمین حرکت… 23

2-5-2- تطابق.. 23

2-6- استخراج ویژگی‏های مربوط به کاهش هوشیاری.. 24

2-6-1- ویژگی‏های ناحیه چشم. 24

2-6-2- ویژگی‏های دهان. 30

2-6-3- ویژگی‏های سر. 30

2-7- تشخیص خستگی و عدم تمرکز حواس… 31

2-7-1- روش‏های مبتنی بر حد آستانه. 31

2-7-2- روش‏های مبتنی بر دانش… 32

2-7-3- روش‏های مبتنی بر آمار و احتمال. 33

2-8- سیستم‏های نظارت چهره راننده در خودروهای تجاری.. 34

3- سیستم پیشنهادی.. 35

3-1- پیکربندی کلی سیستم پیشنهادی.. 35

3-1-1- نورپردازی و تصویربرداری.. 36

3-1-2- سخت‏افزار و پردازنده 37

3-1-3- نرم‏افزار هوشمند. 37

3-2- آشکارسازی چهره 38

3-2-1- ویژگی‏های شبه هار. 39

3-2-2- انتخاب و تعیین اهمیت ویژگی‏ها برای تشکیل یک طبقه‏بندی‏کننده قوی.. 41

3-2-3- درخت تصمیم آبشاری تقویت‏شده 42

3-3- ردیابی چهره 44

3-3-1- پنجره جستجو. 45

3-3-2- معیار تطابق.. 46

3-4- استخراج ویژگی‏های مربوط به کاهش هوشیاری.. 47

3-4-1- ویژگی‏های ناحیه چشم. 47

3-4-2- ویژگی‏های ناحیه چهره و سر. 55

3-5- تشخیص کاهش هوشیاری.. 58

3-5-1- سیستم خبره فازی.. 58

3-5-2- تولید خروجی نهایی.. 64

4- نتایج آزمایش‏ها و ارزیابی سیستم. 69

4-1- چگونگی آزمایش سیستم. 69

4-2- معیار‏های ارزیابی.. 72

4-3- آشکارسازی چهره 73

4-4- ردیابی چهره 75

4-5- استخراج ویژگی‏های ناحیه چشم. 77

4-6- استخراج ویژگی‏های ناحیه سر و چهره 82

4-7- تشخیص کاهش هوشیاری.. 86

4-8- ارزیابی کلی سیستم و الگوریتم‏ها 93

4-8-1- مطالعه سرعت پردازش سیستم پیشنهادی.. 93

4-8-2- مطالعه پیچیدگی محاسباتی الگوریتم‏ها 94

5- نتیجه‏گیری و پیشنهادات… 95

6- مراجع. 99

فهرست شکل‏ها

شکل ‏2‑1: فلوچارت کلی برای سیستم‏های نظارت چهره راننده 12

شکل ‏2‑2: نمونه‏هایی از ماسک‏های ویژگی برای استخراج ویژگی‏های شبه هار. 14

شکل ‏2‑3: درخت تصمیم آبشاری برای آشکارسازی چهره 14

شکل ‏2‑4: سیستم نورپردازی مادون قرمز شامل دو دسته LED به شکل دو حلقه کوچک و بزرگ [6] 16

شکل ‏2‑5: نمایش ایجاد پدیده مردمک روشن و مردمک تیره در نورپردازی مادون قرمز. 17

شکل ‏2‑6: آشکارسازی چشم بر اساس ویژگی مردمک تیره و روشن: شکل‏ها از سمت راست به ترتیب فریم زوج با تصویر مردمک روشن، فریم فرد با تصویر مردمک تیره و تفاضل فریم‏‏های زوج و فرد [6] 17

شکل ‏3‑1: محل قرارگیری دوربین در خودرو برای سیستم پیشنهادی.. 36

شکل ‏3‑2: فلوچارت بخش نرم‏افزار هوشمند در سیستم پیشنهادی.. 38

شکل ‏3‑3: نمونه‏هایی از ماسک‏های ویژگی برای آشکارسازی چهره [32] 39

شکل ‏3‑4: محاسبه مجموع پیکسل‏های بخشی از تصویر با بهره گیری از تصویر انتگرالی.. 40

شکل ‏3‑5: محاسبه یک نمونه ویژگی شبه هار بر اساس تصویر انتگرالی.. 41

شکل ‏3‑6: الگوریتم تشکیل یک طبقه‏بندی‏کننده قوی بر اساس چند ویژگی [33] 42

شکل ‏3‑7: درخت تصمیم آبشاری برای آشکارسازی چهره 43

شکل ‏3‑8: الگوریتم تشکیل یک درخت تصمیم آبشاری بر اساس چند طبقه‏بندی‏کننده قوی [33] 44

شکل ‏3‑9: نمایش چگونگی انجام جستجوی سه مرحله‏ای.. 46

شکل ‏3‑10: نمایش بازه تعریف ویژگی‏های درصد بسته بودن چشم (PERCLOS)، نرخ پلک زدن و فاصله بین پلک‏ها 51

شکل ‏3‑11: نمایش تاثیر پارامتر α در تغییر شکل تابع سیگموئید (β=0) 53

شکل ‏3‑12: نمایش تاثیر پارامتر β در تغییر شکل تابع سیگموئید (α=1) 54

شکل ‏3‑13: منحنی تغییرات فاصله بین پلک‏ها (ELDC) (محور عمودی) نسبت به تغییرات ضریب همبستگی HPO و HPLO (محور افقی) 55

شکل ‏3‑14: مدل کلی سیستم خبره فازی.. 59

شکل ‏3‑15: شکل توابع عضویت تعریف شده برای ورودی درصد بسته بودن چشم (PERCLOS) 60

شکل ‏3‑16: شکل توابع عضویت تعریف شده برای ورودی نرخ پلک زدن (CLOSNO) 60

شکل ‏3‑17: شکل توابع عضویت تعریف شده برای تغییرات فاصله بین پلک‏ها نسبت به حالت طبیعی (ELDC) 61

شکل ‏3‑18: شکل توابع عضویت تعریف شده برای میانگین چرخش سر (ROT) 61

شکل ‏3‑19: شکل توابع عضویت تعریف شده برای اندازه خستگی (Fatigue) 61

شکل ‏3‑20: شکل توابع عضویت تعریف شده برای اندازه عدم تمرکز حواس (Distraction) 62

شکل ‏3‑21: نمایش تغییرات پیوسته مقدار تغییرات فاصله بین پلک‏ها (ELDC) 65

شکل ‏3‑22: نمایش تغییرات پیوسته مقدار میانگین چرخش سر (ROT) 65

شکل ‏3‑23: نمایش تغییرات گسسته درصد بسته بودن چشم (PERCLOS) 66

شکل ‏3‑24: نمایش تغییرات گسسته نرخ پلک زدن (CLOSNO) 66

شکل ‏3‑25: نمایش تغییرات شکل خروجی نهایی سیستم با تغییر مقدار α در ارتباط میانگین‏گیری مداوم. از بالا به پایین مقادیر α برابر می باشد با صفر، 8/0 و 9/0  68

شکل ‏4‑1: نمونه‏هایی از تصاویر تهیه شده در محیط واقعی (داخل خودرو) برای آزمایش سیستم. 70

شکل ‏4‑2: نمونه‏هایی از تصاویر تهیه شده در محیط آزمایشگاهی برای آزمایش سیستم. 70

شکل ‏4‑3: نمونه‏هایی از تصاویر چهره مورد بهره گیری برای آموزش الگوریتم آشکارسازی چهره 74

شکل ‏4‑4: نمونه‏هایی از تصاویر غیرچهره مورد بهره گیری برای آموزش الگوریتم آشکارسازی چهره 74

شکل ‏4‑5: نمونه‏هایی از تصاویر چهره که آشکارسازی نشده‏اند. 74

شکل ‏4‑6: نمونه‏هایی از تصاویر غیرچهره که به اشتباه آشکارسازی شده‏اند. 74

شکل ‏4‑7: یکی از ماسک‏های مهم برای استخراج ویژگی در الگوریتم آشکارسازی چهره 75

شکل ‏4‑8: نمونه‏هایی از تصاویر چهره که به درستی آشکارسازی شده‏اند. 75

شکل ‏4‑9: نمونه‏هایی از خطای ردیابی با بهره گیری از روش جستجوی کامل و محاسبه ضریب همبستگی.. 76

شکل ‏4‑10: نمایش تغییر مکان چهره به دلیل تکان خوردن خودرو در دو فریم با فاصله زمانی یک ثانیه و بروز اشتباه در آشکارسازی بسته بودن چشم به دلیل عدم توانایی الگوریتم ردیابی در تعیین مکان دقیق چهره 78

شکل ‏4‑11: نمایش دو فریم از تصاویر چهره راننده در حالت چرت زدن. تصویر سمت راست حالت چشم باز راننده و تصویر سمت چپ حالت چشم بسته راننده می باشد. در این حالت پلک زدن به آرامی و به گونه نامحسوس انجام می‏گردد. پس نرخ عدم آشکارسازی بسته شدن چشم افزایش می‏یابد. 79

شکل ‏4‑12: تصاویر پلک زدن چشم در افرادی که عینک به چشم دارند. 79

شکل ‏4‑13: نمونه تصاویر تهیه شده از افرادی که عینک آفتابی به چشم دارند. 80

شکل ‏4‑14: نمونه فریم‏هایی از یک فیلم 9 دقیقه‏ای که در آن طریقه تغییرات فاصله بین پلک‏ها از حالت کاملا هوشیار به حالت خواب‏آلوده نشان داده شده می باشد. تصاویر از بالا به پایین و از راست به چپ مربوط به زمان‏های دقیقه اول، دقیقه سوم، دقیقه پنجم، دقیقه هفتم، دقیقه هشتم و دقیقه نهم می‏باشد. 80

این مطلب رو هم توصیه می کنم بخونین:   پایان نامه ارشد رشته کامپیوتر: ارزیابی برخی الگوریتم‌های کنترل همروندی در سیستم مدیریت پایگاه داده‌ها، از طریق مدل‌سازی با پتری رنگی

شکل ‏4‑15: نمودار تغییرات ELDC نسبت به زمان. 81

شکل ‏4‑16: نمایش وضعیت سر نسبت به محورهای مختصات… 83

شکل ‏4‑17: نمایش تغییرات اندازه چرخش سر (R) در یک فیلم دو دقیقه‏ای که در آن پنج بار چرخش رخ داده می باشد… 84

شکل ‏4‑18: نمونه فریم‏هایی از یک فیلم دو دقیقه‏ای که در آن آشکارسازی چرخش سر مورد ارزیابی قرار گرفته می باشد. تصویر راست بالا مربوط به حالت چهره بدون چرخش و سایر تصاویر مربوط به چرخش سر در جهت‏های مختلف می‏باشد. 84

شکل ‏4‑19: نمودار وقوع رخداد پلک زدن در طول زمان. 87

شکل ‏4‑20: نمودار تغییرات درصد بسته بودن چشم (PERCLOS) در طول زمان. 88

شکل ‏4‑21: نمودار تغییرات نرخ پلک زدن (CLOSNO) در طول زمان. 88

شکل ‏4‑22: نمودار تغییرات فاصله بین پلک‏ها (ELDC) در طول زمان. 89

شکل ‏4‑23: نمودار تغییرات میانگین چرخش سر (ROT) در طول زمان. 89

شکل ‏4‑24: اندازه تخمین عدم تمرکز حواس راننده در طول زمان. 90

شکل ‏4‑25: اندازه تخمین خستگی راننده در طول زمان. 90

شکل ‏4‑26: میانگین چرخش سر راننده در طول زمان. 91

شکل ‏4‑27: مقدار تخمین عدم تمرکز حواس راننده در طول زمان. 91
جستجو در سایت :   


شکل ‏4‑28: نمودار پلک زدن یک فرد در فیلم سه دقیقه‏ای. در این فیلم فرد بعد از دقیقه یک، به دلیل مشغله ذهنی (عدم تمرکز حواس درونی) به یک نقطه خیره شده و پلک نمی‏زند. 92

شکل ‏4‑29: اندازه عدم تمرکز حواس راننده در حالتی که وی به دلیل مشغله ذهنی دچار عدم تمرکز حواس درونی شده می باشد… 93

فهرست جدول‏ها

جدول ‏3‑1: قوانین فازی تشخیص خستگی.. 63

جدول ‏3‑2: قوانین فازی تشخیص عدم تمرکز حواس… 64

جدول ‏4‑1: تعداد و مدت زمان فیلم‏های تهیه شده برای آزمایش سیستم به تفکیک شرایط محیط.. 71

جدول ‏4‑2: تعداد و مدت زمان فیلم‏های تهیه شده برای آزمایش سیستم به تفکیک جنسیت افراد 71

جدول ‏4‑3: تعداد و مدت زمان فیلم‏های تهیه شده برای آزمایش سیستم به تفکیک شرایط عینک داشتن.. 71

جدول ‏4‑4: اظهار مفاهیم FPR، FNR، TPR و TNR در قالب ماتریس اغتشاش… 73

جدول ‏4‑5: ارزیابی الگوریتم آشکارسازی چهره 74

جدول ‏4‑6: ارزیابی الگوریتم ردیابی بر اساس نوع روش جستجو و نوع روش محاسبه اندازه انطباق.. 76

جدول ‏4‑7: ارزیابی الگوریتم آشکارسازی بسته شدن چشم. 78

جدول ‏4‑8: مقایسه الگوریتم پیشنهادی با سایر الگوریتم‏های ارائه شده برای آشکارسازی بسته شدن چشم. 82

جدول ‏4‑9: توانایی سیستم پیشنهادی در آشکارسازی چرخش سر حول محورهای مختصات… 83

جدول ‏4‑10: ارزیابی الگوریتم آشکارسازی چرخش سر. 83

جدول ‏4‑11: مقایسه الگوریتم پیشنهادی با سایر الگوریتم‏های ارائه شده برای آشکارسازی چرخش سر. 86

جدول ‏4‑12: مقایسه حجم محاسباتی بخش‏های مختلف سیستم پیشنهادی.. 94

چکیده

هر ساله تصادفات رانندگی زیادی به دلیل خواب‏آلودگی و عدم تمرکز حواس راننده در سراسر دنیا رخ می‏دهد که خسارت‏های جانی و مالی فراوانی به همراه دارند. یکی از روش‏های تشخیص خستگی و عدم تمرکز حواس، بهره گیری از سیستم‏های نظارت چهره راننده می باشد. سیستم‏های نظارت چهره راننده با دریافت تصاویر از دوربین و پردازش آنها، نشانه‏های خواب‏آلودگی و عدم تمرکز حواس را از چشم، سر و چهره استخراج می‏کنند. در این پایان‏نامه یک سیستم نظارت چهره راننده طراحی شده می باشد که با استخراج نشانه‏های خستگی و عدم تمرکز حواس از ناحیه چشم و چهره، کاهش هوشیاری راننده را تخمین می‏زند. در این سیستم چهار ویژگی شامل درصد بسته بودن چشم (PERCLOS)، نرخ پلک زدن، کاهش فاصله بین پلک‏ها و اندازه چرخش سر استخراج می‏گردد. سه ویژگی اول مربوط به نشانه‏های بروز خستگی و عدم تمرکز حواس در ناحیه چشم و ویژگی آخر مربوط به نشانه‏های کاهش هوشیاری در ناحیه چهره و سر می‏باشد. ویژگی‏های ناحیه چشم بر اساس تغییرات پروجکشن افقی ناحیه چشم و ویژگی‏های ناحیه چهره بر اساس مطالعه قالب چهره استخراج می‏گردد. سپس این ویژگی‏ها توسط یک سیستم خبره فازی مورد پردازش قرار می‏گیرد تا اندازه خستگی و عدم تمرکز حواس راننده تخمین‏زده گردد. تصویربرداری سیستم پیشنهادی در طیف مرئی و با دوربین سطح خاکستری انجام شده می باشد. نتایج آزمایش‏ها بر روی فیلم‏های تهیه شده در محیط واقعی و آزمایشگاهی نشان می‏دهد که روش پیشنهادی دقت بسیار خوبی در استخراج ویژگی و تشخیص کاهش هوشیاری راننده دارد. از لحاظ سرعت اجرای الگوریتم، سرعت سیستم پیشنهادی حدود 5 فریم در ثانیه می‏باشد که می‏توان آن را سیستم بلادرنگ محسوب نمود.

پیشگفتار

افزایش تعداد خودروها در جهان و در نتیجه آن افزایش آمار خسارات و تلفات ناشی از تصادفات، باعث گردید تا محققین به دنبال کشف علل اصلی تصادفات رانندگی باشند. یکی از مهمترین این علل، خستگی و عدم تمرکز حواس راننده می‏باشد که علت اصلی حدود 20% از تصادفات محسوب می‏گردد. با در نظر داشتن تأثیر موثر خستگی و عدم تمرکز حواس راننده در بروز تصادفات، راهکارهایی برای مقابله با این عامل معرفی گردید. یکی از راهکارهای اصلی و جدید برای تشخیص خستگی و عدم تمرکز حواس راننده و اعلام هشدار در مواقع ضروری، سیستم‏های نظارت چهره راننده می باشد. پیشنهاد تولید سیستم‏های نظارت چهره راننده اولین بار در اواخر قرن 20 میلادی مطرح گردید، اما عمده تحقیقات در این زمینه مربوط به بعد از سال 2000 میلادی می‏باشد.

تاکنون طراحی و تولید چنین سیستم‏هایی در ایران به گونه جدی مورد مطالعه قرار نگرفته می باشد. سیستم ارائه شده در این پایان‏نامه به عنوان اولین سیستم نظارت چهره راننده در ایران می‏باشد که قادر می باشد اندازه خستگی و عدم تمرکز حواس راننده را با بهره گیری از پردازش تصاویر چهره راننده تخمین بزند. هرچند تحقیقات بیشتری برای تولید یک سیستم نظارت چهره راننده با هدف کاربرد در خودروهای تجاری مورد نیاز می باشد، اما این پایان‏نامه می‏تواند شروع بسیار خوبی برای آغاز تحقیقات در این زمینه باشد.

مقدمه

1-1- تعریف سیستم‏های نظارت چهره راننده
همراه با توسعه صنعت خودرو در جهان، کاربرد فناوری‏های جدید در اتومبیل نیز افزایش یافته می باشد. سیستم‏های حمل و نقل هوشمند[1] یا به اختصار ITS، کاربرد کامپیوتر و فناوری اطلاعات و ارتباطات در شبکه‏های حمل و نقل بشر و کالا می باشد. سیستم پیشرفته دستیار راننده[2] یکی از بخش‏های سیستم حمل و نقل هوشمند محسوب می‏گردد. این سیستم‏ها برای بهبود کارایی خودرو و افزایش امنیت راننده و سرنشینان آن بهره گیری می‏شوند و در مواقع بحرانی، به راننده اعلام هشدار کرده یا به جای راننده تصمیم مناسب را برای کنترل و هدایت خودرو اتخاذ می‏کنند.

سیستم نظارت چهره راننده، یک سیستم بلادرنگ[3] می باشد که بر اساس پردازش تصویر چهره راننده، وضعیت جسمی و تا حدی وضعیت روحی او را تحت نظارت قرار می‏دهد. معمولا وضعیت راننده از بسته بودن پلک‏ها، چگونگی پلک‏زدن، خیره بودن چشم‏ها به نقطه خاص، جهت نگاه چشم، خمیازه کشیدن و حرکت سر قابل تشخیص می باشد. این سیستم در هنگام خواب‏آلودگی، خستگی و عدم توجه راننده به جاده، اعلام هشدار[4] می‏کند.

 

تعداد صفحه : 115

قیمت : 14700 تومان

بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد

و در ضمن فایل خریداری شده به ایمیل شما ارسال می گردد.

پشتیبانی سایت :        ****       serderehi@gmail.com

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

***  *** ***