تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل می باشد)

چکیده:

همگام با پیشرفت تکنولوژی نیاز به سیستم های بازشناسی به هنگام چهره به گونه فزاینده ای رو به گسترش می باشد. این امر کلاسه‌بندی‌های متعارف و معمول در زمینه بازشناسی چهره را با چالشهایی مواجه ساخته می باشد. زمان آموزش طولانی، پیکربندی و ساختار ثابت کلاسه بندی های موجود و عدم وجود توانایی در یادگیری نمونه های جدید بدون فراموش کردن نمونه های قبلی، از اهم این موردها می باشد. ایده بهره گیری از شبکه های عصبی مبتنی بر الگوریتم رزونانس تطبیقی می تواند این چالشها را تا حد زیادی مرتفع کند. این برتری ها به دلیل خصوصیات ذاتی و پویاییهای این نوع از شبکه های عصبی می باشد. نتایج شبیه سازی‌ها حکایت از برتری نسبی اما کمرنگ صحت کلاسه بندی در شبکه های عصبی پرسپترون چند لایه، نسبت به شبکه های عصبی مذکور دارند. سرعت یادگیری در شبکه های مذکور بسیار بیشتر از پرسپترون چند لایه بوده و تنظیم پارامترهای آن بسیار ساده تر می باشد. انتخاب پارامتر مراقبت به عنوان مهمترین پارامتر شبکه های مذکور، تقریباً در نیمی از بازه مجاز آن، عملکرد بهینه شبکه را تضمین می کند. همچنین انتخاب ویژگی های موثر با بهره گیری از الگوریتم ژنتیک و شبکه های عصبی مبتنی بر الگوریتم رزونانس تطبیقی، درصد صحت کلاسه بندی را به گونه قابل توجهی افزایش داده می باشد.

 

«فهرست مطالب»

 

چکیده:

پیشگفتار: 1

فصل اول: کلیات

1-1- مقدمه. 5

1-2- بازشناسی چهره 5

1-2-1- تعبیر ومفهوم بردارچهره 6

1-2-2- مفهوم فضای چهره‌ 7

1-2-3- صورت های ویژه 8

1-2-4- مولفه های اساسی یک مجموعه. 9

1-2-5 طریقه کلی بازشناسی چهره با بهره گیری از مولفه های اساسی.. 10

1-3- مطالعه بعضی چالشهای موجود. 11

1-3-1- زمان آموزش…. 12

1-3-2- پیکربندی ثابت و غیر قابل تغییر در اکثر طبقه بندها 12

1-3-3- دشواری تنظیم پارامترهای ذاتی در کلاسه بندی های متداول‌.. 13

1-3-4- افزایش پیچیدگی شبکه با افزایش تعداد نمونه های آموزش‌…. 13

1-4- بهره گیری از شبکه های عصبی مبتنی برالگوریتم رزونانس تطبیقی‌به‌عنوان راهکارپیشنهادی  14

1-5- جمع بندی و اختصار فصل.. 15

فصل دوم: مطالعه الگوریتم و ساختار شبکه های عصبی مبتنی بر Fuzzy ARTMAP و مروری بر کارهای گذشته

2-1- مقدمه. 17

2-2- پیکربندی و الگوریتم شبکه ART MAP Fuzzy.. 20

2-3- پیشرفت های اخیر در زمینه شبکه های عصبی بر اساس FAM…. 27

2-3-1- اصلاحات و بهینه سازی FAM…. 28

2-3-2- الگوریتم های جدید بر اساس FAM…. 35

2-4- کاربردهای پیشرفته شبکه های عصبی مبتنی بر FAM…. 45

2-5- جمع بندی و اختصار فصل…………………………………………………………………………………………………. 51

فصل سوم: آزمایش های انجام شده، نتایج شبیه سازیها و بحث و مطالعه بر روی آنها

3-1- مقدمه. 53

3-2- معرفی بانک چهره مورد بهره گیری در پایان نامه‌. 53

3-3- مختصری راجع به شبکه عصبی SFAM…. 55

3-4- پیش پردازش و آماده سازی تصاویر. 57

3-5- استخراج مشخصه. 57

3-6- مشخصات داده ها و شرایط بهره گیری شده در آزمایشات مرحله اول  58

3-6-1- تجزیه و تحلیل نتایج شبیه سازیها (سری اول آزمایشات) 60

3-7- مشخصات داده ها و شرایط آزمایشهای مرحله دوم. 61

3-7-1- نتایج شبیه سازیها با بهره گیری از شبکه عصبی SFAM (سری دوم آزمایشات) 62

3-7-2- تجزیه و تحلیل نتایج شبیه سازیها با بهره گیری از SFAM (سری دوم آزمایشات) 65

3-7-3- نتایج شبیه سازیها با بهره گیری از شبکه عصبی MLP.. 65

3-7-4- تجزیه و تحلیل نتایج شبیه سازیها با بهره گیری از شبکه عصبی MLP.. 68

3-7-5- مقایسه کلی عملکرد شبکه های عصبی MLP و SFAM…. 69

3-8- مشخصات داده ها و شرایط آزمایش های سری سوم. 70

3-9- مروری اجمالی بر الگوریتم ژنتیک…. 71

3-9-1-  بعضی از اصطلاحات الگوریتم ژنتیک…. 72

3-9-2- چگونگی عملکرد الگوریتم ژنتیک: 73

3-9-3- طریقه انتخاب ویژگی های مؤثر با بهره گیری از الگوریتم ژنتیک و SFAM…. 74

3-9-4- نتایج شبیه سازیها (سری سوم آزمایشات) 75

3-9-5– تجزیه و تحلیل نتایج حاصل از آزمایش های سری سوم. 79

3-10-جمع بندی و اختصار فصل.. 80

فصل چهارم: نتیجه گیری کلی و ارائه پیشنهاداتی برای ادامه تحقیقات

4-1- جمع بندی و نتیجه گیری……………………………………………………………………………………………… 82

4-2 پیشنهاداتی برای ادامه طریقه پژوهش……………………………………………………………………………….. 83

مراجع …………………………………………………………………………………………………………………………………………. 85

 

فهرست اشکال

شکل 1-1 روش بردار سازی تصاویر…………………………………………………………………………………………….. 7

شکل 1-2 یک فضای دو بعدی به همراه دو مولفه اساسی مجموعه نمونه ها. P1 و P2 دو بردار مولفه اساسی می باشند       8

شکل 1-3 بعضی از صورت های ویژه پایگاه داده ORL…………………………………………………………… 9

شکل 1-4- بازنمایی یک چهره توسط چهره های ویژه. مجموعه ضرایب، بردار ویژگی چهره را مشخص می نماید      9

شکل 2-1: شمای کلی ماژول ART: ورودی تحت کدگذاری مکمل وارد می گردد و نودهای لایه F2 همان خوشه های شبکه هستند……………………………………………………………………………………………………………………………………………… 23

شکل 2-2- فلوچارت کلی ماژول ART…………………………………………………………………………………….. 24

شکل 2-3- پیکربندی کلی شبکه عصبی Fuzzy ART MAP…………………………………………. 27

شکل 2-4 میانگین (  انحراف معیار) درصد صحیح کلاسه بندی برای داده های آموزش و آزمایش با بهره گیری از FAM، جهت کلاسه بندی سیگنالهای سندرم Down با بهره گیری از استراتژی میانگین گیری برای مقادیر افزایشی پارامتر مراقبت  با متد آموزش تک تکراری………………………………………………………………………………………………………………………… 47

شکل 2-5 میانگین (  انحراف معیار) درصد صحیح کلاسه بندی برای داده های آموزش، آزمایش و ارزیابی با بهره گیری از FAM، جهت کلاسه بندی سیگنالهای سندرم Down با بهره گیری از استراتژی میانگین گیری، برای مقادیرمختلف پارامتر مراقبت با متدآموزش همراه با          ارزیابی……………………………………………………………………………………………… 49

شکل 2-6 میانگین ( انحراف معیار) درصد صحیح کلاسه بندی برای داده های آموزش و آزمایش با بهره گیری از FAM، جهت کلاسه بندی سیگنالهای سندرم Down با بهره گیری از استراتژی میانگین گیری، برای مقادیر مختلف پارامتر مراقبت با متد آموزش همراه با                       آموزش کامل …………………………………………………………………….. 50

این مطلب رو هم توصیه می کنم بخونین:   دانلود پایان نامه ارشد : کاهش انرژی مصرفی در محیط ابرواره با استفاده از مهاجرت

شکل 3-1 تصاویر بانک چهره ORL، 10تصویر برای هر یک از 40 نفر………………………………… 54

شکل 3-2- ساختار SFAM – ورودی به لایه F0 اعمال می گردد و درF1 کدگذاری مکمل انجام شده و بعد ورودی دو برابر می گردد………………………………………………………………………………………………………………………………………………….. 56

شکل 3-3- درصد صحت کلاسه بندی داده های آموزش (  انحراف معیار) در SFAM به ازای مقادیر مختلف پارامتر مراقبت با بهره گیری از متد آموزش تک تکراری و استراتژی                 میانگین گیری…………………………. 59

شکل 3-4- تعداد نودها (خوشه ها)ی تشکیل شده در ماژول Fuzzy ART در شبکه عصبی SFAM، به ازای مقادیر مختلف پارامتر مراقبت و بهره گیری از متد آموزش  تک تکراری و استراتژی میانگین گیری………………….. 59

شکل 3-5- زمان مورد نیاز برای آموزش شبکه عصبی SFAM به ازای مقادیر مختلف پارامتر مراقبت و بهره گیری از متد آموزش تک تکراری و استراتژی میانگین گیری………………………………………………………………………………………… 60

شکل 3-6 صحت کلاسه بندی الگوریتم های مختلف پس انتشار خطا به عقب برای شبکه عصبی MLP و دو حالت آموزش سریع و آهسته برای SFAM به ازای تعداد نمونه های آموزش        مختلف………………………………… 68

فهرست جداول

جدول 3-1- نتایج شبیه سازیها با بهره گیری از شبکه عصبی SFAM در مود آموزشی تک تکراری با بهره گیری از استراتژی میانگین گیری……………………………………………………………………………………………………………………………………………….. 63

جدول 3-2: نتایج شبیه سازیها با بهره گیری از SFAM درحالت آموزش آهسته با بهره گیری از استراتژی میانگین گیری  64

جدول 3-3- نتایج شبیه سازیها با بهره گیری از شبکه عصبی MLP و به کارگیری چهار الگوریتم معروف پس انتشار خطا به عقب…………………………………………………………………………………………………………………………………………………………. 67

جدول 3-4: نتایج حاصله از انتخاب ویژگی های موثر با بهره گیری از الگوریتم ژنتیک و شبکه عصبی SFAM به ازای داده هایی با 2 نمونه برای آموزش……………………………………………………………………………………………………………………… 76

جدول 3-5: نتایج حاصله از انتخاب ویژگی های موثر با بهره گیری از الگوریتم ژنتیک و شبکه عصبی SFAM به ازای داده هایی با 4 نمونه برای آموزش……………………………………………………………………………………………………………………… 77

جدول 3-6: نتایج حاصله از انتخاب ویژگی های موثر با بهره گیری از الگوریتم ژنتیک و شبکه عصبی SFAM به ازای داده هایی با 6 نمونه برای آموزش……………………………………………………………………………………………………………………… 78
دانلود متن کامل در سایت sabzfile.com
 

 

 

 

 

پیشگفتار:

 

یکی از مسائل قدیمی و چالش برانگیز در زمینه هوش مصنوعی، موضوع بازشناسی چهره می باشد. قدمت تحقیقات در این زمینه مربوط به دهه هفتاد میلادی می باشد.علیرغم تحقیقات فراوانی که در حواشی این مسئله صورت گرفته، همواره عرصه های تازه و بکر برای پژوهش وجود داشته می باشد. در حال حاضر محققین با زمینه های کاری کاملاً متفاوت اعم از روانشناسی، بازشناسی الگو،شبکه های عصبی، بینایی ماشین و گرافیک، با انگیزه های متفاوت در این ارتباط فعالیت می کنند. در پایان نامه حاضر پس از طرح یک سری چالشهای موجود در زمینه بازشناسی چهره با رویکردی مبتنی بر بکارگیری دسته ای خاص از شبکه های عصبی مصنوعی به عنوان کلاسه بند، کوشش شده چالشهای مذکور تا حد امکان مرتفع گردد.

اکثر کلاسه بندی های مدرن الگو، نظیر شبکه های عصبی پرسپترون چند لایه[1] و ماشین بردارهای[2] پشتیبان در فاز آموزش عموماً نیاز به صرف بازه های زمانی طولانی داشته و همچنین بار محاسباتی سنگینی به سیستم تحمیل می کنند. امروزه در بسیاری از موردها، بخصوص در سیستم های امنیتی مدرن فرودگاه ها، ترمینالها و غیره، رویکردهای مبتنی بر تشخیص و بازشناسی به هنگام[3] چهره، به شکل فزاینده ای رو به گسترش می باشد. پس نیاز به طبقه بندی های سریع و دقیق با بار محاسباتی و الگوریتمی پایین برای چنین کاربردهایی اجتناب ناپذیر می باشد. بعلاوه در چنین سیستم هایی علاوه بر اینکه یادگیری اولیه بر روی دسته ای از داده ها به صورت یکجا انجام می گردد، نیاز به نوعی یادگیری افزایشی نیز وجوددارد تا علاوه بر یادگیری فضای نمونه های اولیه، تغییرات و پویاییهای فضای نمونه ها نیز، برای کلاسه بند، قابل یادگیری بوده و قابلیت رشد و ارتقاء آموزش برای سیستم فراهم می باشد. برای مثال یک سیستم بازشناسی چهره در یک فرودگاه بین المللی را در نظر بگیرید که در آغاز برای تشخیص هویت یک سری از افراد خاص با سابقه جرایم تروریستی، آموزش دیده می باشد. آن چیز که واضح می باشد با گذشت زمان مشخصه های چهره افراد ثابت نمانده و همچنین بازشناسی چهره مجرمین جدید نیز اجتناب ناپذیر می نماید. به علت های ذکر گردیده، سیستم بازشناسی بایستی بدون فراموش کردن نمونه هایی که قبلاً دیده می باشد، قابلیت به روزرسانی یادگیری و بازشناسی چهره های جدید را نیز داشته باشد.

در این پایان نامه کوشش شده با مطالعه مزایای ذاتی نوع خاصی از شبکه های عصبی مصنوعی مبتنی بر الگوریتم رزونانس تطبیقی[4] و بهره گیری از آنها بعنوان کلاسه بند در بازشناسی چهره، چالشهای مذکور تا حدی مرتفع گردد. همچنین با بهره گیری از الگوریتم های تکاملی نظیر الگوریتم ژنتیک[5] و شبکه های مذکور، روشی کارا جهت انتخاب ویژگیهای مؤثر چهره در بازشناسی، پیشنهاد شده می باشد.

[1] – Multi Layer Perceptron (MLP)

[2] – Support Vector Machine (SVM)

[3] – Online

[4] – Adaptive Resonance Theory

[5]– Genetic Algorithm

تعداد صفحه : 61 جستجو در سایت :   

قیمت : 14700 تومان

بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد

و در ضمن فایل خریداری شده به ایمیل شما ارسال می گردد.

پشتیبانی سایت :        ****       serderehi@gmail.com

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

***  *** ***