استنتاج شبکه های تنظیمات ژنی از روی داده های سری زمانی Microarray به وسیله شبکه های بیزین دینامیک

استاد راهنما:

دکتر منصور ذوالقدری جهرمی

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی گردد

(در فایل دانلودی نام نویسنده موجود می باشد)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل می باشد)

فهرست مطالب:

فصل اول: مقدمه                                                                     1

  • ضرورت انجام کار 6
  • نگاه کلی به فصول رساله 6

 

فصل دوم: پیشینه پژوهش                                                           8

2-1- مقدمه                                                                                          9

2-2- مقدمات زیستی                                                                               9

2-2-1- ژن                                                                                   9

2-2-2- اظهار ژن                                                                            10

2-2-3- شبکه های تنظیم کننده ژنی                                                   11

2-3- روش های یاد گیری شبکه های تنظیم کننده ژنی                                     12

2-3-1- روش های مبتنی بر خوشه بندی                                               12

2-3-2- روش های مبتنی بر رگرسیون                                                  13

2-3-3- روش های مبتنی بر اطلاعات متقابل                                           14

2-3-4- روش های تابعی                                                                  14

2-3-5- روش های مبتنی بر تئوری سیستم                                            14

2-3-6- روش های بیزین                                                                  15

 

  • فصل سوم: روش پیشنهادی 18
  • 3-1- مقدمه 19
  • 3-2- شبکه های بیزین دینامیک 20
  • 3-3- یادگیری شبکه های بیزین دینامیک 22
  • 3-3-1- روش های امتیازدهی بیزین 23
  • 3-3-1-1- امتیازدهی به روش K2 25
  • 3-3-1-2- امتیازدهی به روش BDe 26

3-3-2- روش های امتیازدهی بر اساس تئوری اطلاعات                               26

3-3-2-1- امتیازدهی به روش log-likelihood (LL)                      27

3-3-2-2- امتیازدهی به روش BIC                                             27

3-3-2-3- امتیازدهی به روش AIC                                             28

3-3-2-4- امتیازدهی به روش MIT                                            28

3-3-3پیچیدگی زمانی یادگیری شبکه های بیزین دینامیک                         29

3-4- شبکه های تصادفی و شبکه های Scale-free                                         31

3-5- روش پیشنهادی                                                                             35

 

فصل چهارم: نتایج تجربی                                                         44

4-1- مقدمه                                                                                        45

4-2- روش های تولید شبکه های Scale-free                                               46

4-3- روش های سنجش دقت برای شبکه های استنتاج شده                                50

4-4- آزمایش اول: بهره گیری از روش جستجوی کامل                                           52

4-5- آزمایش دوم: نگاهی دقیق تر به عملکرد روش ارائه شده                               54

4-6- آزمایش سوم: بهره گیری از جستجوی حریصانه                                             57

4-7- آزمایش چهارم: بازیابی قسمتی از شبکه تنظیمات ژنی در Yeast                    60

4-8- آزمایش پنجم: : عملکرد روش ارائه شده در بازیابی شبکه های تصادفی              63

 

فصل پنجم: جمع بندی                                                            67

5-1- نتیجه گیری                                                                                 68

5-2- پیشنهاد برای کارهای آتی                                                                  69

 

منابع پژوهش                                                                                        70

چکیده به زبان انگلیسی                                                                           74
جستجو در سایت :   


فهرست جدول ها

جدول 4-1- نتایج بدست آمده به وسیله روش های مختلف برای استنتاج شبکه های  scale-freeبا بهره گیری از داده های آموزشی به طول 50

جدول 4-2- نتایج بدست آمده به وسیله روش های مختلف برای استنتاج شبکه های scale-free با بهره گیری از داده های آموزشی به طول 100

54

 

54

 

 

   

فهرست شکل ها

شکل 3-1- مثالی از دو شبکه های بیزین تشکیل دهنده یک شبکه بیزین دینامیک

شکل 3-2- قالب اصلی الگوریتم یادگیری شبکه های بیزین دینامیک

شکل 3-3- شمای کلی توزیع دو جمله ای

شکل 3-4- شمای کلی توزیع قانون توانی

شکل 3-5- شبه کد الگوریتم ارائه شده برای یاد گیری شبکه های بیزین دینامیک با ساختار scale-free

شکل 3-6- شبه کد الگوریتم ارائه شده برای یاد گیری شبکه های بیزین دینامیک با ساختار scale-free با بهره گیری از روش جستجوی حریصانه

شکل 4-1- توزیع احتمالی درجه خروجی برای 1000 شبکه شامل 1000 گره تولید شده به وسیله الگوریتم شبیه سازی برای تولید شبکه های scale-free

شکل 4-2- توزیع احتمالی درجه ورودی برای 1000 شبکه شامل 1000 گره تولید شده به وسیله الگوریتم شبیه سازی برای تولید شبکه های scale-free

شکل 4-3- نمونه ای از شبکه جهت دار با ساختار scale-free

شکل 4-4- مقایسه بین نمونه های مختلف از الگوریتم پیشنهادی

شکل 4-5- نتایج بدست آمده به وسیله روش های مختلف برای استنتاج شبکه هایی با ساختار scale-free

شکل 4-6- قسمتی از زیر شبکه تنظیمات ژنی در Yeast

شکل 4-7- نتایج بدست آمده به وسیله روش های مختلف برای استنتاج قسمتی از زیر شبکه تنظیمات ژنی در Yeast

شکل 4-8- نتایج بدست آمده به وسیله روش های مختلف برای استنتاج شبکه های تظادفی

21

31

32

33

39

 

42

 

49

 

49

 

50

56

59

 

61

62

 

65

 

چکیده

شبکه های تنظیم کننده ژنتیکی مجموعه ای از ارتباطات ژن-ژن هستند که ارتباط علت و معلولی را در فعالیت های ژنی ایجاد می کنند. دانش ما در مورد این شبکه ها تأثیر بسیار موثری در شناخت فرآیندهای زیستی اعمال می کند و می تواند باعث کشف روش های جدید برای درمان بیماری های پیچیده و تولید داروهای اثر گذار گردد.

روش های زیادی برای تشخیص شبکه های تنظیم کننده ژنتیکی پیشنهاد شده می باشد. در این بین، شبکه های بیزین دینامیک مزایای ویژه ای دارا می باشند که باعث شده تا توجه زیادی را به خود جلب کنند.

با وجود تحقیقات انجام شده در این زمینه، مهندسی معکوس شبکه های تنظیم کننده ژن به وسیله شبکه های بیزین دینامیک به هیچ عنوان امری بدیهی نیست. غالباً تعداد نمونه های موجود برای آموزش مدل از تعداد مجهولات مسئله بسیار کمتر می باشد. همچنین اندازه پیچیدگی زیاد این مدل ها و دقت آنها از مهم ترین نواقص آن ها می باشند.

یکی از عمده ترین روش هایی که برای بالا بردن دقت شبکه های استنتاج شده به کار گرفته می گردد بهره گیری از دانش اولیه در مورد شبکه های تنظیم کننده ژنی می باشد. یکی از منابع عمده این دانش اولیه اطلاعات ما در مورد ساختار کلی شبکه های تنظیم کننده ژنی می باشد. تحقیقات انجام شده نشان می دهند که تعداد یال های موجود در این شبکه ها کم می باشد. همچنین شواهد بسیاری بدست آمده اند که نشان می دهند توزیع درجه خروجی در شبکه های تنظیم ژنی از قانون توانی پیروی می کنند. در واقع این شبکه ها در درجه خروجی scale-free هستند.

علیرغم این شواهد، روش های یادگیری شبکه های بیزین دینامیک این گونه شبکه ها را شبکه هایی با ساختار تصادفی در نظر می گیرند و یا تنها پیچیدگی شبکه را کنترل می کنند.

در این پژوهش روشی برای یاد گیری شبکه های بیزین دینامیک ارائه می گردد که به گونه مشخص بر این فرض شکل گرفته که شبکه واقعی ساختاری scale-free در توزیع درجه خروجی دارد. روش ارائه شده پیچیدگی زمانی چند جمله ای دارد و می تواند برای استنتاج شبکه هایی با تعداد گره های زیاد مورد بهره گیری قرار گیرد.

آزمایش هایی که برای مقایسه توانایی الگوریتم ارائه شده با متدهای قبلی یادگیری شبکه انجام شده اند نشان می دهند که الگوریتم ارائه شده، زمانی که برای استنتاج شبکه هایی بهره گیری می گردد که scale-free هستند، قادر می باشد کیفیت شبکه استنتاج شده را به خصوص زمانی که داده های آموزشی ناکافی هستند به صورت قابل توجهی افزایش دهد.

  • مقدمه

در هر سلول یک ارگانیزم زنده، هر لحظه، هزاران ژن با هم در ارتباط هستند تا فرآیندهای پیچیده زیستی را انجام پذیر سازند. شبکه های تنظیم کننده ژنتیکی[1] مجموعه ای از قسمت های DNA در سلول می باشد که به گونه غیر مستقیم (به وسیله RNA یا پروتئین های تولیدی) با یکدیگر و مواد دیگر درون سلول ارتباط دارند و بدین طریق سرعت رونویسی[2] از روی ژن ها را برای تشکیل mRNA کنترل می کنند. هر مولکول mRNA یک پروتئین خاص با کارایی خاصی را تولید می کند. بعضی از پروتئین ها فقط برای فعال یا غیر فعال کردن ژن ها بهره گیری می شوند. این گونه پروتئین ها فاکتورهای رونویسی[3] نامیده می شوند و اصلی ترین تأثیر را در شبکه تنظیم ژنی اعمال می کنند. به اظهار دیگر شبکه تنظیم کننده ژنتیکی مجموعه ای از ارتباطات ژن-ژن می باشد که ارتباط علت و معلولی را در فعالیت های ژنی ایجاد می کند. دانش ما در مورد این شبکه ها تأثیر بسیار موثری در شناخت فرآیندهای زیستی اعمال می کند و می تواند باعث کشف روش های جدید برای درمان بیماری های پیچیده و تولید داروهای اثر گذار گردد. از این رو تشخیص و مهندسی معکوس شبکه های تنظیم کننده ژنتیکی به یکی از مهم ترین زمینه های تحقیقاتی تبدیل شده می باشد [1].

عموماً برای تشکیل شبکه های تنظیم کننده ژنتیکی از داده های Microarray بهره گیری می کنند. Microarray یک تکنولوژی می باشد که قابلیت اندازه گیری هم زمان اندازه اظهار[4] mRNA مربوط به هزاران ژن را به وجودآورده می باشد و می تواند اطلاعات مربوط به ارتباط ژن ها را در سطح ژنوم در اختیار ما قرار دهد [2]. اما راه حل ساده ای برای تشخیص شبکه های تنظیم کننده ژنتیکی از روی داده های Microarray وجود ندارد. در بیشتر موردها تعداد مجهولات مسئله بسیار زیاد می باشد. این در حالی می باشد که تعداد کمی داده در اختیار داریم. همچنین در بسیاری از موردها اندازه خطا در اندازه گیری های موجود بالاست و یا با مشکل عدم وجود اندازه گیری برای بعضی از متغیرها مواجه هستیم.

داده های Microarray را می توان به دو نوع ایستا[5] و سری زمانی[6] تقسیم نمود. حالت اول تصویری می باشد از اظهار ژن ها در یک لحظه و شرایطی خاص. در حالت دوم اظهار ژن ها در یک فرآیند درون سلولی در طول زمان اندازه گیری می گردد. این سری های زمانی منعکس کننده فرآیندهای دینامیک درون سلولی هستند. اکثر روش های اولیه ای که برای واکاوی داده های سری زمانی Microarray بهره گیری می شدند در واقع روش هایی بودند که برای داده های ایستا طراحی شده بودند. در چند سال اخیر روش هایی برای کار با داده های سری زمانی به گونه خاص مطرح شده اند که قادرند علاوه بر حل مشکلاتی که مخصوص داده های سری زمانی هستند، از ویژگی های منحصر به فرد این گونه داده ها نیز بهره گیری کنند. با این حال کار کردن با داده های سری زمانی نیازمند ظرافت و دقت بیشتری نسبت به داده های ایستا می باشد و اقدام مهندسی معکوس شبکه های تنظیم کننده ژنتیکی در این موردها مشکل تر می باشد.

روش های زیادی برای تشخیص شبکه های تنظیم کننده ژنتیکی پیشنهاد شده اند که مهمترین آن ها عبارتند از: شبکه های بولین [3]، شبکه های بولین تصادفی [4]، معادلات دیفرانسیل [5] و شبکه های بیزین[7] [6]. در این بین، شبکه های بیزین که قادرند ارتباط علت و معلولی بین متغیر ها را بر اساس روابط احتمالاتی اظهار کنند توجه زیادی را به خود معطوف کرده اند. به علت نویزی بودن داده های Microarray، بهره گیری از مدل های احتمالاتی به اندازه زیادی می تواند کارایی مدل را افزایش دهد. علیرغم موفقیت نسبی شبکه های بیزین، عدم امکان وجود حلقه[8] در این شبکه ها کارایی آنها را در بسیاری از موردها محدود می کند زیرا در شبکه های تنظیم کننده ژنتیکی واقعی حلقه های بازخورد[9] متداول هستند. از این رو زمانی که با داده های سری زمانی مواجه هستیم شبکه های بیزین دینامیک به گزینه ای مناسب برای مدل کردن تبدیل می گردد [7،8،9]. شبکه های بیزین دینامیک فرم عمومی تری از شبکه های بیزین هستند که می توانند داده های با تاخیرهای زمانی را مدل کنند.

شبکه های بیزین دینامیک مزایای ویژه ای دارا می باشند که باعث شده تا این مدل توجه زیادی را به خود جلب کند. اول اینکه در این نوع مدل قادر هستیم تا روابط علت و معلولی بین متغیر ها را مستقیماً نشان داده و از اطلاعات موجود در این مورد بهره گیری کنیم. دومین امتیاز این مدل ماهیت تصادفی آن می باشد. فرآیند های مربوط به تنظیمات ژنی فرآیند های تصادفی هستند و حتی اگر خود این فرآیندها ذاتاً قطعی باشند، اندازه زیاد خطا در اندازه گیری های انجام شده باعث می شوند تا فرآیند ها از دید ما تصادفی باشند. سومین موردی که باعث برتری این مدل می گردد قابلیت این شبکه ها برای دنبال کردن تغییر متغیرها در طول زمان می باشد.

علیرغم این ویژگی ها مهندسی معکوس شبکه های تنظیم ژن از روی داده های سری زمانی به وسیله شبکه های بیزین دینامیک به هیچ عنوان امری بدیهی نیست. غالباً تعداد نمونه های موجود برای آموزش مدل از تعداد مجهولات مسئله بسیار کمتر می باشد [10]. همچنین در مقادیر اندازه گیری شده خطای زیادی هست و در مورد هایی برای بعضی از متغیرها اندازه گیری صورت نگرفته می باشد. در حال حاضر در اکثر موردها در آزمایش هایی با تعداد کمی ژن یا داده های شبیه سازی شده به کار گرفته شده اند. اندازه پیچیدگی زیاد این مدل ها و همچنین کمی دقت آنها از مهم ترین نواقص آن ها می باشند. برای بدست آوردن مدل هایی برای کار با داده های حجم بالا و افزایش کارایی مدل های تولید شده به تحقیقات بیشتری در این زمینه نیاز می باشد. دانلود متن کامل در سایت sabzfile.com

یکی از عمده ترین روش هایی که برای بالا بردن دقت شبکه های استنتاج شده و جبران کمبود داده های آموزشی طی فرآیند یادگیری شبکه به کار گرفته می گردد بهره گیری از دانش اولیه در مورد شبکه های تنظیم کننده ژنی می باشد [11]. یکی از منابع عمده این دانش اولیه اطلاعاتی می باشد که در مورد ساختار کلی شبکه های تنظیم کننده ژن بدست آمده می باشد. تحقیقات انجام شده نشان می دهند که این شبکه ها از نظر ارتباطی خلوت[10] هستند. به اظهار دیگر تعداد یال های موجود در این شبکه ها کم می باشد. همچنین شواهد بسیاری بدست آمده اند که نشان می دهند توزیع درجه خروجی در شبکه های تنظیم ژنی از قانون توانی[11] پیروی می کنند [12،13]. در واقع این شبکه ها در درجه خروجی scale-free هستند. این در حالی می باشد که درجه ورودی در آن ها از توزیع پواسن با میانگین کم پیروی می کند [14،15،16].

به زبان زیستی، در شبکه های تنظیم کننده ژنی اظهار هر ژن توسط تعداد کمی ژن دیگر تنظیم می گردد و همچنین اکثر ژن ها بر روی تعداد کمی ژن دیگر اثر تنظیم کنندگی دارند. اما، تعداد محدودی از ژن ها وجود دارند که بر روی اظهار تعداد زیادی از ژن های دیگر اثر دارند. این ژن ها که عمده ترین تأثیر را در شبکه های تنظیم کننده ژنی بر عهده دارند hub نامیده می شوند.

با وجود اینکه شواهد بسیاری در تایید ساختار scale-free شبکه های تنظیم کننده ژنی بدست آمده می باشد، تمامی روش های یادگیری شبکه های بیزین دینامیک این گونه شبکه ها را شبکه هایی با ساختار تصادفی در نظر می گیرند و یا تنها پیچیدگی شبکه را کنترل می کنند.

در این پژوهش روشی برای یاد گیری شبکه های بیزین دینامیک ارائه می گردد که به گونه مشخص بر این فرض شکل گرفته که شبکه واقعی ساختاری scale-free در توزیع درجه خروجی دارد. روش ارائه شده پیچیدگی زمانی چند جمله ای دارد و می تواند برای یادگیری شبکه هایی با تعداد گره های زیاد مورد بهره گیری قرار گیرد.

برای مقایسه توانایی الگوریتم ارائه شده با متدهای قبلی یادگیری شبکه از آزمایش های شبیه سازی متعددی بهره گیری شده می باشد. نتایج این آزمایش ها نشان می دهند که الگوریتم ارائه شده، زمانی که برای یادگیری شبکه هایی بهره گیری می گردد که scale-free هستند، قادر می باشد کیفیت شبکه استنتاج شده را به صورت قابل توجهی افزایش دهد. هر چه اندازه داده های آموزشی کمتر باشد، تفاوت کیفیت شبکه استنتاج شده به وسیله الگوریتم ارائه شده با شبکه های استنتاج شده به وسیله الگوریتم های قبلی بیشتر می گردد. همچنین زمانی که از این الگوریتم برای یاد گیری شبکه های با ساختار تصادفی بهره گیری می گردد، الگوریتم ارائه شده قادر می باشد تا شبکه هایی را بازیابی کند که از لحاظ مطابقت با شبکه واقعی معادل شبکه های استنتاج شده به وسیله روش های قبلی می باشد.

 

تعداد صفحه : 92

قیمت : 14700 تومان

بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد

و در ضمن فایل خریداری شده به ایمیل شما ارسال می گردد.

پشتیبانی سایت :        ****       serderehi@gmail.com

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

***  *** ***

این مطلب رو هم توصیه می کنم بخونین:   دانلودپایان نامه ارشدرشته کامپیوتر:پردازش پرس وجوهای چندگانه در شبکه حسگر بیسیم